275 research outputs found

    Exploiting Image Local And Nonlocal Consistency For Mixed Gaussian-Impulse Noise Removal

    Full text link
    Most existing image denoising algorithms can only deal with a single type of noise, which violates the fact that the noisy observed images in practice are often suffered from more than one type of noise during the process of acquisition and transmission. In this paper, we propose a new variational algorithm for mixed Gaussian-impulse noise removal by exploiting image local consistency and nonlocal consistency simultaneously. Specifically, the local consistency is measured by a hyper-Laplace prior, enforcing the local smoothness of images, while the nonlocal consistency is measured by three-dimensional sparsity of similar blocks, enforcing the nonlocal self-similarity of natural images. Moreover, a Split-Bregman based technique is developed to solve the above optimization problem efficiently. Extensive experiments for mixed Gaussian plus impulse noise show that significant performance improvements over the current state-of-the-art schemes have been achieved, which substantiates the effectiveness of the proposed algorithm.Comment: 6 pages, 4 figures, 3 tables, to be published at IEEE Int. Conf. on Multimedia & Expo (ICME) 201

    Image Super-Resolution via Dual-Dictionary Learning And Sparse Representation

    Full text link
    Learning-based image super-resolution aims to reconstruct high-frequency (HF) details from the prior model trained by a set of high- and low-resolution image patches. In this paper, HF to be estimated is considered as a combination of two components: main high-frequency (MHF) and residual high-frequency (RHF), and we propose a novel image super-resolution method via dual-dictionary learning and sparse representation, which consists of the main dictionary learning and the residual dictionary learning, to recover MHF and RHF respectively. Extensive experimental results on test images validate that by employing the proposed two-layer progressive scheme, more image details can be recovered and much better results can be achieved than the state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 4 pages, 4 figures, 1 table, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Improved Total Variation based Image Compressive Sensing Recovery by Nonlocal Regularization

    Full text link
    Recently, total variation (TV) based minimization algorithms have achieved great success in compressive sensing (CS) recovery for natural images due to its virtue of preserving edges. However, the use of TV is not able to recover the fine details and textures, and often suffers from undesirable staircase artifact. To reduce these effects, this letter presents an improved TV based image CS recovery algorithm by introducing a new nonlocal regularization constraint into CS optimization problem. The nonlocal regularization is built on the well known nonlocal means (NLM) filtering and takes advantage of self-similarity in images, which helps to suppress the staircase effect and restore the fine details. Furthermore, an efficient augmented Lagrangian based algorithm is developed to solve the above combined TV and nonlocal regularization constrained problem. Experimental results demonstrate that the proposed algorithm achieves significant performance improvements over the state-of-the-art TV based algorithm in both PSNR and visual perception.Comment: 4 Pages, 1 figures, 3 tables, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201

    High Quality Image Interpolation via Local Autoregressive and Nonlocal 3-D Sparse Regularization

    Full text link
    In this paper, we propose a novel image interpolation algorithm, which is formulated via combining both the local autoregressive (AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Estimating the high-resolution image by the local AR regularization is different from these conventional AR models, which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution (LR) and high-resolution (HR) images. Then the nonlocal adaptive 3-D sparse model is formulated to regularize the interpolated HR image, which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition, a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively. Experiment results demonstrate that the proposed algorithm achieves significant performance improvements over the traditional algorithms in terms of both objective quality and visual perceptionComment: 4 pages, 5 figures, 2 tables, to be published at IEEE Visual Communications and Image Processing (VCIP) 201

    XCon: Learning with Experts for Fine-grained Category Discovery

    Full text link
    We address the problem of generalized category discovery (GCD) in this paper, i.e. clustering the unlabeled images leveraging the information from a set of seen classes, where the unlabeled images could contain both seen classes and unseen classes. The seen classes can be seen as an implicit criterion of classes, which makes this setting different from unsupervised clustering where the cluster criteria may be ambiguous. We mainly concern the problem of discovering categories within a fine-grained dataset since it is one of the most direct applications of category discovery, i.e. helping experts discover novel concepts within an unlabeled dataset using the implicit criterion set forth by the seen classes. State-of-the-art methods for generalized category discovery leverage contrastive learning to learn the representations, but the large inter-class similarity and intra-class variance pose a challenge for the methods because the negative examples may contain irrelevant cues for recognizing a category so the algorithms may converge to a local-minima. We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images by first partitioning the dataset into sub-datasets using k-means clustering and then performing contrastive learning on each of the sub-datasets to learn fine-grained discriminative features. Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method

    Polarizing intestinal epithelial cells electrically through Ror2

    Get PDF
    © 2014. Published by The Company of Biologists Ltd.Peer reviewedPublisher PD

    Modeling correlation noise statistics at decoder for multi-view distributed video coding

    Full text link
    Recently, multi-view distributed video coding (MDVC) receives more and more attention, as its low-complexity encoder and high-complexity decoder coding paradigm suits for many applications such as sensor networks, in which several view sequences are required to be coded by a few power-constraint encoders. Modeling the correlation noises between original frame and side information frame is a hot research issue in distributed video coding (DVC), since it is a vital factor affecting the coding efficiency. This paper firstly proposes a novel method to model the correlation noises in MDVC. And an algorithm to online estimate the model at decoder using the knowledge of adjacent views is also presented. Experiment results show that the proposed correlation model can significantly improve coding efficiency. ?2009 IEEE.EI

    Effects of laser fluence on silicon modification by four-beam laser interference

    Get PDF
    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm, 495 mJ/cm, and 637 mJ/cm, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7-9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications
    corecore